import matplotlib.pyplot as plt import numpy as np from sklearn import linear_model x = np.arange(0,20).reshape(-1, 1) # reshape vectors into 1d array for sklearn y = np.array([0]*10 + [1]*10).reshape(-1, 1) reg = linear_model.LinearRegression() reg.fit(x, y) logit = linear_model.LogisticRegression(penalty='none') logit.fit(x, y) plt.rcParams.update({'font.size': 18}) plt.subplot(1, 2, 1) plt.scatter(x, y, color='b') plt.plot(x, reg.predict(x), color='k') plt.title('linear regression') plt.legend(['regression line', 'original data']) plt.xticks(()) plt.show() plt.subplot(1, 2, 2) plt.scatter(x, y, color='b') plt.plot(x, logit.predict(x), color='k') plt.title('logistic regression') plt.legend(['logit line', 'original data']) plt.xticks(()) plt.show()